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A B S T R A C T 

The long-memory properties of four types of carbon indices and prices are tested using 

models of general autoregressive conditional heteroskedasticity with a moving mean and an 

integrated fraction (ARFIMA-FIGARCH). The study found that three carbon indices, three 

ETFs, ETN, and futures have a significant long-memory effect. Using the iterated cumulative 

sum of squares algorithm (ICSS), the multiple structural breaks in the four carbon indexes 

were examined during the enormous magnitude of oil price and pandemic from 2019/01/01-

2023/02/01. The evolution of distinct fundamentals is made possible by the presence of 

multiple structural changes between eight carbon indexes (prices). Previous literature has 

been enhanced by evidence that shows that carbon pricing breaks are typically associated 

with structural changes that are driven by key events. The carbon prices are responsive to 

energy, macroeconomic factors, and policy issues. 

Keywords: Carbon Indices, ETFs, ARFIMA-FIGARCH Models, The Long Memory, Multiple 

Structural Breaks, Bai and Perron test, ICSS Algorithm 

JEL classification:: C51 G14 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
*Corresponding Author: E-mail: ares.fy.chen@gmail.com 

mailto:ares.fy.chen@gmail.com


IRABF 2023 Volume 15 Number 4 
 

 33 

1. Introduction 

As a response to the urgency of global warming, the Kyoto Protocol was signed at the United 

Nations Framework Convention on Climate Change in Kyoto, Japan, on December 11, 1997. 

To control climate change and limit greenhouse gas (GHG) emissions from developed countries, 

the Kyoto Protocol was implemented on February 16, 2005. The Kyoto Agreement contains a 

binding target for 37 industrialized countries and the European Community through national 

measures to reduce greenhouse gas emissions while encouraging new energy technologies. 

Three market-based mechanisms can be used to meet their objectives: carbon market emissions 

trading, a clean development mechanism (CDM), and joint implementation. Emissions trading 

permits countries to sell their excess capacity to countries to enhance the environment that 

anticipates exceeding their targets. Like any other commodity tracked, a carbon price is a levy 

on carbon pollution to encourage polluters to reduce greenhouse gas emissions in the 

atmosphere. 

Carbon pricing is a significant incentive for reducing greenhouse gas emissions. The 

carbon market has become more active in recent years. The carbon market's overall turnover 

rises as the number of countries participating in regulation increases. Understanding the 

characteristics of carbon allowance price volatility is essential to maintain a stable carbon 

market development. In the global carbon market, carbon products are classified under two 

categories. Emissions trading systems, including Australia, the European Union, the Chicago 

Board of Trade, and the United Kingdom's emissions trading markets, have facilitated the 

creative activity of carbon licenses (allowances). A reduction plan (like the CDM and joint 

reductions or other voluntary lessening procedures) was used in the latter to reduce credit. The 

European Union Allowances (EUA) price break that occurred in April 2006 was investigated 

by Alberola et al. (2008) based on the report of verified emissions from 2005. EUA spot prices 

were measured to determine if they influence energy prices and unexpected temperature 

variations during the cold period. EGARCH and implied volatility models were the main 

subjects of significant EUA changes, shown by Chevallier (2011) through retrospective and 

forward-looking tests.  

Pesaran and Timmermann (2004) proposed that forecasting models that neglect structural 

breaks produce inferior results than models with structural breaks. The issue of structural 

disruptions has many vital uses. According to Guo and Wohar (2006), there are multiple 

structural breaks in the VIX that the CBOE publishes. According to the study, the means of the 

lowest market volatility were at their lowest during 1992–2007.   

Bai (1997) and Bai and Perron (2006) created a method for detecting multiple structural 

breaks in time series and analyzing their statistical significance. Gadea et al. (2004) 

demonstrated that recognizing non-linear dependence based on the conditional mean and 

variance requires a long memory occurrence, supported by the risk of ignoring structural breaks. 

Structural breaks and the long memory phenomenon were the focus of their study.   

The carbon market is a marketplace for products made from carbon-based policies with 

financial advantages (Boersen and Scholtens, 2014). Bai and Perron test introduced by Bai and 

Perron (2003) and Iterated Cumulative Sums of Squares (ICSS) algorithm created by Aggarwal 

et al. (1999) is generally used for detecting breakpoint information in time series. These models 

are applied to other papers, such as financial assets (Hwang and Shin, 2017), stock prices (Wang 

and Moore, 2009; Charfeddine and Ben Khediri, 2016), and tourism demand (Cro and Martins, 

2017). The ICSS identified endogenous changes in the volatility of carbon indices.  

Moreover, sudden volatility changes could occur in emerging markets like the carbon 

market. The estimation of continued volatility is expected to drive these changes. However, 
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more work needs to be done on structural breaks in carbon markets. Political change, climate 

change, and allowance allocation are external factors that affect the price volatility in the carbon 

market. The empirical results for equity returns in Tunisia and Malaysia were demonstrated by 

Tan and Khan (2010) and Mabrouk and Aloui (2010) while analyzing ARFIMA-FIGARCH.  

This study aims to determine if carbon indices have a long memory effect following the 

sustainability goal. The carbon index returns and volatilities incorporate long memory 

properties. The main points of this article are as follows: 

(1) This study uses an ARFIMA model, where a whole difference parameter is allowed. Four 

types of carbon indexes (prices) are tested for long memory and asymmetry using the 

FIGARCH model. In order to find high persistence in volatility, the GARCH model 

extensively modeled the time-varying volatility for carbon indexes, including carbon index, 

carbon futures, Exchange-traded note (ETN), and Exchange-traded fund (ETF).  

(2) The Bai and Perron test and the Iterated Cumulative Sums of Squares (ICSS) algorithm are 

used in this article to explore structural breaks in volatility. The more extensive the test 

results, the more sufficient they are for identifying structural breakpoints in the carbon price. 

In addition, this paper explains why these breakpoints occur to aid individuals in 

understanding the mechanism behind the carbon price. 

This paper is organized as follows: Section 2 presents the literature review; Section 3 

describes the data and explains the models; Section 4 Empirical results and findings; and 

Section 5 is the conclusion. 

2. Literature Review 

The European Union (EU) set mandatory objectives for carbon emissions and implementing 

renewable energy sources (RES) in 2008. By 2050, the EU will be a climate-neutral economy 

with no net-zero greenhouse gas (GHG) emissions. The European Emissions Trading System 

(ETS) supports the reduction of greenhouse gas emissions from the power sector to industry, 

such as mobility, buildings, agriculture and forestry, and Intra-EU flights in line with European 

Commission policy. The EU-ETS is the main focus of the current research on carbon market 

volatility.  

The European market was analyzed by Feng et al. (2011) using a random walk model, and 

they concluded that changes significantly influenced carbon prices in the carbon market. The 

findings of Fang et al. (2018) support these results. To explore China's Carbon Market, Song et 

al. (2019), using the Logit model, found that environmental regulations and carbon emission 

rules have significantly influenced carbon pricing in the near term. Yuan et al. (2020) used the 

general equilibrium model and found that carbon prices were strongly connected to carbon 

market prices. The GARCH model was utilized by Byun and Cho (2013) to estimate the 

volatility of carbon futures prices.  

Chevallier (2011) found a satisfactory relationship between macroeconomic and EU 

carbon pricing using Markov's transformative autoregressive model. Carbon pricing has been 

significantly impacted by the transportation and power generation sectors. Ren et al. (2020) and 

Chan (2020) used the general equilibrium model to show that carbon pricing had a detrimental 

effect on economic growth. Wu et al. (2013) investigated the Chinese energy market concerning 

carbon pricing. The findings showed that coal prices had a significant influence on carbon 

prices. The price of heating oil and carbon prices were closely connected. Perčić et al. (2020) 

and Zhu et al. (2020) concluded that power prices also significantly affected carbon prices. The 

increase in carbon emissions is a sign that carbon prices will increase because higher energy 

prices have prompted the use of coal. 
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The European Union carbon market was examined by Creti et al. (2012) using the co-

integration method. The findings revealed that government financial subsidies significantly 

impacted carbon pricing. While renewable subsidies lower carbon levels, Ren and Zhu (2020) 

thoroughly examined China's carbon market and found that fossil fuel subsidies raise carbon 

prices. Huang et al. (2021) proved that renewable energy has the potential to reduce CO2 

emissions. As a result, industrial companies have reduced their carbon licensing requirements 

and costs. 

Chang et al. (2015) suggested that carbon trade was directly tied to carbon pricing. Wang 

et al. (2019) used the ARMA-GARCH model and concluded that legitimate trade has an 

ongoing impact on carbon pricing but that inappropriate trade causes significant volatility in 

carbon prices. Venmans et al. (2020) examined OECD nations and found that foreign direct 

investment and imports did not positively impact carbon prices. 

This study has gained much knowledge from the available research on carbon pricing. 

There needs to be more consistency in the current literature. Most of the findings revolve around 

the assumption that the correlations between carbon pricing and their impact variables are linear. 

Using linear regression models to examine economic issues has unintended consequences. The 

relevant estimation known to the researchers used the ordinary least squares (OLS) technique. 

The average effect of the independent variable on the dependent variable is typically depicted 

in the results. The carbon market is a complex volatility model, the volatility of carbon price 

being affected by energy prices and weather, and the development of the carbon market and 

traders' behavior. As a result, research focused exclusively on the relationship between carbon 

and energy prices needs to be revised. This work fills in the gaps in previous relevant research 

and makes necessary enhancements. This study examines the long memory properties of carbon 

indexes using ARFIMA-FIGARCH from the carbon index data. During the COVID-19 

pandemic, the ICSS was utilized to examine the multiple structural breaks in the four types of 

carbon indexes and prices caused by the enormous magnitude of oil prices. 

3. Data and Methodology 

The distinct datasets collected from the S&P Dow Jones Indices encompassing indices, futures, 

ETN, and ETFs, to compute a metric for carbon price volatility from January 1, 2019, to 

February 1, 2023. A sample of the daily settlement prices for the IHS Markit Global Carbon 

Index (GLCARB) and IHS Markit Carbon EUA Index (GLCEUA) was collected. The 

GLCARB is created to assess the performance of the global carbon credit market. Currently, 

the index encompasses the major cap-and-trade programs in Europe and North America, such 

as European Union Allowances (EUA), California Carbon Allowances (CCA), and the 

Regional Greenhouse Gas Initiative (RGGI). The GLCEUA is intended to assess the activity of 

the European Union Allowance credit market. The GLCEUA only contains carbon credit 

futures for the current year connected with European Union Allowance December Expiry and 

vintage years that coincide with the current year of expiration of the futures. Cap-and-trade 

programs are responsible for carbon credit futures' sustainability and future existence.  

The European Union Allowance Yearly Futures (FEUA) daily settlement price sets are 

collected from the European Energy Exchange (EEX). The Low Carbon 100 Europe (LC100) 

Index is intended to show the price levels of European companies with the best climate score.  

Daily closing prices on an ETN and three ETFs were used in this study. The varying 

indices' inception dates are the study period's starting point. The data was sourced from Yahoo! 

Finance websites. The iPath Series B Carbon ETN (GRN) keeps track of the Barclays Global 

Carbon II TR USD Index. It provides exposure to carbon credit futures from two related 
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mechanisms, mainly the EU Emissions Trading System (ETS). From September 11, 2019 to 

February 1, 2023, the daily settlement price for GRN is set.  

Carbon ETF includes the iShares MSCI ACWI Low Carbon Target ETF (CRBN) and the 

VanEck Low Carbon Energy ETF (SOMG) daily settlement price, while the KraneShares 

Global Carbon Strategy ETF (KRBN) daily settlement price is from August 1, 2019 to February 

1, 2023. 

3.1 ARFIMA 

The ARMA model (p, q) was proposed by Box and Pierce (1970) to show stationary, where p 

describes the autoregressive order and q represents the moving average item. The ARMA 

model's mean, auto-covariance, and variance are all constants and cannot be influenced by time. 

The ARIMA model (p, d, q) proposed by Box and Jenkins (1970) uses parameter d to 

distinguish time series variables and make them stationary. Due to an unsatisfactory parameter 

d with a value of zero or one, Engle and Granger (1987) indicated an equilibrium error. 

Controlling a long-term memory effect was limited. Granger and Joyeux (1980) developed the 

AFIRMA model (p, d, q) that enables the parameter d to be either non-integer or fractional. A 

long-memory effect occurs in the time series of 0<d<0.5. The mathematical model is described 

in the following: 

           𝜙(𝐿)(1 − 𝐿)𝑑(𝑦𝑡 − 𝜇𝑡) = 𝜓(𝐿)𝜀𝑡 ,                                (1) 

where d is the real number parameter for the fractional integration, and L and 𝜀𝑡 represent a 

noise residual with the lag operator, respectively.  

The long memory of the time series variable is captured by the ARFIMA model using the 

d parameter. The variable represents a short memory if d = 0, and 𝜀𝑡 geometrically decays 

when there is the effect of market shocks. Moreover, the variable is stationary if -0.5 < d <0.5, 

and 𝜀𝑡 gradually decays near zero (i.e., hyperbolic decay) when the effect of market shocks 

occurs. A unit root process is present if d = 1 (Styger et al., 2009). In general, empirical results 

indicate that the ARFIMA model is more accurate in predicting volatility. 

3.2 FIGARCH  

To illustrate the variance of residual changes over time and a phenomenon called volatility 

clustering, Engle (1982) proposed the autoregressive conditional heteroscedasticity (ARCH) 

model. The use of the generalized autoregressive conditional heteroskedasticity (GARCH) 

model was proposed by Bollerslev (1986) to take into account the time series and the associated 

prediction error. He asserted that the square of the prior residual is the manipulation of 

conditional variance, and the prior variance influences it. By modeling the conditional variance, 

the GARCH model provides more flexibility than the ARCH model.  

The incorporation of the fractionally integrated generalized autoregressive conditionally 

heteroskedastic (FIGARCH) model was proposed by Baillie et al. (1996) to capture the long 

memory in volatility returns. Hyperbolic decay at an incremental rate of zero. The random 

external shock of each period can be more delayed if the variables have a long memory. The 

random external shock can be measured by obtaining a faster geometric decay for stationary 

variables. 

The FIGARCH model, which was highly elastic in modeling conditional variance, was 

depicted by Bollerslev and Mikkelsen (1996), Beine et al. (2002), and Bentes (2014). The model 

captured both stationary GARCH for d=0 (Bollerslev, 1986) and non-stationary GARCH. 

Moreover, IGARCH sets for d=1 (Engle and Bollerslev, 1986). This model is widely used in 

the field of conditional variance modeling. It contains the covariance stationary GARCH for 
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d=0 and the non-stationary FIGARCH for d=1. The FIGARCH (p, d, q) model was described 

as follows:   

        𝛷(L)(1 − L)𝑑𝜀𝑡
2 =  ω + [1 − 𝛽(𝐿)]𝑣𝑡 ,                               (2)  

where 𝜐𝑡 represent the innovation of conditional variance, and the root of 𝜙(𝐿) and [1 − 𝛽(𝐿)] 

are supposed to locate at the external of the unit root circle. The fractional differencing 

parameter is 𝜐 ≡ 𝜀𝑡
2 − 𝜎𝑡

2 when 0≤ 𝑑 ≤ 1. The concept of conditional variance is based on the 

process of 𝜐𝑡 with a zero mean that is serially uncorrelated. The intermediate range of 

persistence for the FIGARCH model exists when 0 < d < 1. The series is stationary, and the 

effect of market shocks decays gradually to zero when -0.5 < d < 0.5. The series is short memory, 

and the effect of market shocks decreases geometrically when d = 0. Furthermore, there is a 

unit root process when d = 1. According to Beine et al. (2002) and Bentes (2014), the FIGARCH 

model can predict more accurately than the GARCH and IGARCH models. The discovery of a 

long-memory process in the Euro exchange rate by Pelinescu and Acatrinei (2014) indicates 

persistence. 

3.3. Structure breaks 

Parameter instability and structural change tests were important to the econometric work. The 

ICSS test was introduced by Inclán and Tiao (1994) to look at sudden variations in 

unconditional volatility in a time series. The ICSS algorithm is commonly utilized for 

identifying discrete variance changes and estimating the location and duration of each change. 

The Quandt-Andrews framework is further extended by Bai and Perron (1998, 2003a) and Bai 

(1997), who provide theoretical and computational results that allow for multiple unknown 

breakpoints. The multiple structure breaks model detects sudden changes in the mean of an 

observed time series. 

3.3.1 Structural Break in Mean: The Bai-Perron Method (BP) 

The analysis presumes that the financial time series shows a stationary mean during an initial 

period until a sudden change in variance occurs. Bai and Perron (2003) determine theoretical 

and computational outcomes that extend the Quandt–Andrews framework by enabling us to test 

multiple unknown breakpoints. This paper will examine the scenario of a single structural 

change regression model that involves T periods and m potential breaks. Let us consider that a 

time series comprising breaks m (regimes m+1) is defined as follows: 

    𝑦𝑡 = 𝑥𝑖
, 𝛽 + 𝑧𝑖

, 𝛿1 + 𝜇𝑖,       𝑡 = 1,2 … , 𝜇𝑖,                                (3) 

    𝑦𝑡 = 𝑥𝑖
, 𝛽 + 𝑧𝑖

, 𝛿2 + 𝜇𝑖,       𝑡 = 𝑇1 + 1,  𝑇1 + 2 … , 𝑇2,                      (4) 

……. 

    𝑦𝑡 = 𝑥𝑖
, 𝛽 + 𝑧𝑖

, 𝛿𝑚+1 + 𝜇𝑖,    𝑡 = 𝑇𝑚 + 1,  𝑇𝑚 + 2 … , 𝑇.                      (5) 

where 𝑦𝑡  stands for the observed dependent variable at time t. 𝑥𝑡  and z define covariance 

vectors with dimensions (𝑝 × 1) and (𝑞 × 1), respectively. The corresponding vectors of 

coefficients are 𝛽 and 𝛿𝑗  (𝑗 = 1,2, … , 𝑚 + 1), and 𝜇𝑡 refer to the error term at time t. The 

break dates (𝑇1 < 𝑇2 … < 𝑇𝑚 < 𝑇) can be regarded as unknown. Because the parameter vector 

𝛽  does not limit changes, the model is a partial structural shift model and is effectively 

estimated over the entire sample. The estimation method was built by Bai and Perron (1998, 

2003) based on minimizing the sum of squares residuals. 

   ∑ ∑ (𝑦𝑡
𝑇𝑖
𝑡=𝑇𝑖−1+1

𝑚+1
𝑖=1 − 𝑧𝑡

, 𝛿𝑖)
2.                                            (6)  

Ⅰ. ( )kSupFT  test: ( )kSuFT  stand for the F statistic. 
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    H0: no structure. 

    H1: a fixed number of breaks k. 

Ⅱ. Double maximum tests (UDmax): the maximum number of breaks is permitted. 

    H0: no structure. 

    H1: an unknown number of breaks given some upper bound (M). 

    𝑈𝐷𝑚𝑎𝑥  defines an equal weighted statistic, ( ) ( )qFqMFUD mTMmT ;ˆ,,ˆmax, 11max  = , 

and ( ) ( )qFqMFWD mTMmt ;ˆ,,ˆmax, 11max  =  represent the weights are determined by the 

number of individuals test such that the marginal p-values are equal across values of m.  

Ⅲ. A test of l versus l+1 breaks: a sequential test ( )llFT 1sup + . 

    H0: no structure. 

    H1: a single change. 

    The estimate of the number of breaks can be taken into account by the Bayesian 

Information Criterion (BIC), and the modified Schwarz Criterion (LWZ) was proposed by Liu 

et al. (1997). 

3.3.2 Structural Breaks in Variance: The Iterated Cumulative Sums of Squares (ICSS) 

The analysis assumes that the time series will have a stationary variance for an initial period 

until a sudden change in variance occurs. Inclán and Tiao (1994) proposed that there should be 

a break in the variance specification. The variance is then still for a while until the following 

sudden change. The process is repeated over time, resulting in a time series of observations 

with an unknown number of changes in variance.   

Let {𝑋𝑡} represent a series of independent observations based on a normal distribution. It 

is noted that the variance is denoted by 𝜎𝑗
2, where j = 0, 1, …, NT. A term that describes the 

total number of changes is NT.  

Using the ICSS of the series, the statistic 𝐷𝓀 measures the number and time point when 

variance changes may occur. 

      𝐶𝓀 =  ∑ 𝑋𝑡
2𝓀

𝑡=1 ,                                                     (7) 

      𝐷𝓀 =  (
𝐶𝓀

𝐶𝑇
) −

𝓀

𝑇
 , 𝓀 = 1, … , T;  𝐷0 =  𝐷𝑇 = 0,                         (8) 

where C𝓀 and 𝐶𝑇 stand for the mean centered cumulative sums of squares using 𝓀 and T 

observations, respectively.  

Without variance changes during the sample period, the series 𝐷𝓀 will oscillate around 

zero. When variations change, the series drifts upwards or downwards from zero. The 

distribution for the quality ((
𝑇

2
) 𝐷𝓀)

1

2
 will have a convergence linked to a standard Brownian 

motion. At point 𝓀0, the change point of variance will extend to the interval t = 1,…, T. The 

quality will reach its maximum when ((
𝑇

2
) 𝐷𝓀)

1

2
> 𝐶𝛼. The breaking value is 𝐶𝛼, which equal 

to 1.358 at 5% level. 

The 𝐷𝓀 function alone is insufficient to bring out the multiple points of structural change. 

Inclán and Tiao (1994) implemented an algorithm examining the 𝐷𝓀 function over different 
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periods to seek the different time series change points systematically. The 𝐷𝓀 plot can identify 

the breakpoints. 

3.4 GARCH model estimations with changes in variance 

Arago and Fernandez-lzquierdo (2003) updated the GARCH model to examine changes in 

unconditional variance. To determine points of change in variance, the GARCH model is 

employed to remove sudden changes. Lamoureux and Lastrapes (1990) and Glosten et al. (1993) 

looked at the representation of different changes in variance through the use of dummy variables 

with GARCH and proposed the following: 

  ht
2 = α + ∑ FiDi + ∑ βiht−i

2 + ∑ δiεt−i
2q

i=1
p
i=1

p
i=2 ,                            (9) 

  ht
2 = α + ∑ FiDi + ∑ βiht−i

2 + ∑ δiεt−i
2q

i=1
p
i=1

p
i=2 + γ𝑍t−1

− εt−1
2 ,                 (10) 

where Di are the dummy variables (break) that mirror the variance changes, and  the variables 

Fi  stand for the differences for α . Moreover, 𝑍t−1
−  refer to the unit as long as εt−1 <0 

(innovation in t=1) and zero when εt−1>0. If the value γ>0, the asymmetrical effect occurs. 

The GARCH model overestimates the persistence of volatility by ignoring sudden and relevant 

variance changes, as Lamoureux and Lastrapes (1990) suggested.   

4. Empirical Results 

Table 1 provides descriptive statistics based on four carbon data. The GRN ETN is the most 

volatile, related to the standard deviation of 2.7527, followed by the GLCEUA index at 1.3568, 

whereas the CRBN and LC100 index appeared lowly at 0.57% and 0.4973, respectively. The 

FEUA had the highest average positive return of 0.055, while the GRN had the lowest average 

negative return of -0.0174. The results for all samples are skewed negatively. These conditions 

can explain the high volatility of different datasets in the market. The skewness has a negative 

value, which signifies that the mean of a distribution with a negative skewness is less than the 

median, which reveals the asymmetry of the distribution. Kurtosis results can determine the 

risk. The distribution of kurtosis data is leptokurtic due to the high values. The variance of all 

samples is low because the returns are usually close to the mean and are associated with a 

leptokurtic distribution, which suggests a lower variance than a normal distribution. An 

abnormal distribution is indicated by the Jarque-Bera statistic for residual normality, which 

shows that most of the data is significant at the 1% level. Therefore, the distribution of all 

samples is abnormal. The correlation coefficient Q (10) is significant as there is no serial 

correlation. 

4.1 Long memory effect 

In addition, the ARFIMA and ARFIMA-FIGARCH models are run in this study. The optimal 

model is obtained using AIC by examining ARFIMA (0, d, 1) to ARFIMA (3, d, 3) based on 

the minimum. The d parameter makes it possible to estimate the existence of a long memory. 

ARFIMA and ARFIMA-FIGARCH models are represented in Table 2. The d-coefficient 

in the ARFIMA model indicates that FEUA is -0.5 < d <0.5. At 10% levels, a memory with a 

long term is significant. As a result, FEUA returns can be expected or estimated on a long-term 

basis. The ARFIMA model has confirmed the existence of a long memory in other studies 

(Nouira et al., 2004; Chen and Diaz, 2013; Kang and Yoon, 2007; and Chen and Malinda, 2014). 

The ARFIMA-FIGARCH model indicated that GLCARB, GLCEUA, and GRN have a long 

memory for volatility at significant levels, suggesting that they can be predicted accurately. A 

long memory of price and commodity indices was identified by Baillie (1996) and Arouri et al. 

(2012). Stationary is the term used to describe the LC100, FEUA, KRBN, CRBN, and SOMG. 

Hence, the effect of market shocks decays gradually to zero, showing that long memory does 
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not exist in their return. The results indicate that the volatilities have predictable structures, and 

investors and traders can reap their benefits through proper modeling and forecasting. The 

ARFIMA-FIGARCH for the return volatility outcome revealed that the d-coefficient for the 

LC100, FEUA, and CRBN are 0<d<1. These findings show that volatility has a more significant 

impact on negative shocks than positive shocks, which is significant at 1%. 

4.2 Multiple Sudden Changes  

The work involves two analyses linked to multiple structural breaks in the carbon indices. The 

first study examines the structural breaks in the average process of the series. The second 

analysis examines the structural breaks that occur during the variance process of the series. The 

return graphs in Figure 1 clearly show a variety of volatility periods. The daily adjust close 

price series of carbon indices has been restructured using multiple structural breaks. 

4.2.1 Bai and Perron Test Results 

In order to detect multiple structural breaks, the empirical research applies the following set of 

tests proposed by Bai and Perron (1998, 2003): the double maximum tests, the 𝑆𝑢𝑝𝐹𝑇(𝑘) test, 

and 𝑆𝑢𝑝𝐹𝑇(𝑙 + 1|𝑙). By employing a trimming percentage of 15%, Bai and Perron (2003) 

examined the tests allowing for a maximum number of 5 breaks based on the sequential testing. 

The results are in Tables 3, 3-1, 4, and 5. Firstly, the 𝑈𝐷𝑚𝑎𝑥 and 𝑊𝐷𝑚𝑎𝑥  tests exhibit the 

result of structural breaks at a 5% significant level, implying the time series has multiple 

structural breaks.  

In Table 3, the 𝑆𝑢𝑝𝐹𝑇(5) tests are significant in all sample series. According to the 

findings, carbon indices have at least three breaks. The significant results pick up the largest 

statistically significant breakpoint in Table 3-1. The outputs of 𝑈𝐷𝑚𝑎𝑥 and 𝑊𝐷𝑚𝑎𝑥 reflected 

the number of breakpoints which corresponding the unweighted and weighted maximized 

statistics. The results revealed that a maximum of three breaks for the 𝑈𝐷𝑀𝑎𝑥 and four breaks 

for the 𝑊𝐷𝑀𝑎𝑥 existed. 

The F-statistic is shown in Table 4, along with the F-statistic scaled by the number of 

varying regressors. The sequential result is generated by running tests from 1 to maximum 

pauses until we cannot reject the null assumption of no pause. In addition, the work further uses 

𝑆up𝐹𝑇(𝑙 + 1|𝑙) tests to illustrate the number of structural breaks. This result shows that the 

𝑆up𝐹𝑇(1|0)  statistic rejects the zero break null hypothesis and accepts the one break 

alternative hypothesis in GLCARB and FEUA. However, the 𝑆up𝐹𝑇(3|2) statistic rejects the 

two breaks null hypothesis and accepts the three break alternative hypothesis, implying GRN 

has three structural breaks.   

The results of sequential, BIC, and LWZ tests are presented in Table 5. Bai and Perron 

(2003) suggested that a sequential procedure for selecting the breakpoint is effective when the 

number of breaks present is similar. Consequently, the BIC results reveal that FEUA has three 

structural breaks. There are four structural breaks in GLCARB, LC100, GRN, and SMOG, 

while there are five structural breaks in GLCEUA, KRBN, and CRBN. 

The structural break approach estimated the multiple structural shifts at unknown dates 

and breaks. The structure break dates and means are given for each segment, and for FEUA, 

there are three structural breaks on 8/24/2020, 4/06/2021, and 11/18/2021.
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Table 1 The Descriptive Statistics of Variables 

Indices Market Type Index Code Period Obs Mean SD  Skew Kurt J-B Q(10) 

Carbon 

Indices 

NYSE  Index 
IHS Markit Global 

Carbon Index 
GLCARB 

2019/01/01-

2023/02/01 
1012 0.041 0.9483 -0.5 4.56 924.83*** 23.92 

NYSE  Index 
IHS Markit Carbon 

EUA Index 
GLCEUA 

2019/01/01-

2023/02/01 
1012 0.052 1.3568 -0.6 4.41 83.74*** 27.43 

AMS Index 
Low Carbon 100 

Europe 
LC100 

2019/01/01-

2023/02/01 
1050 0.013 0.4973 -1.3 14.2 9101.4*** 37.33 

Futures EEX Futures 

European Union 

Allowance Yearly 

Futures 

FEUA 
2019/01/01-

2023/02/01 
1055 0.055 1.2992 -0.5 4.19 819.40*** 23.38 

ETN NYSE  ETN 
iPath Series B Carbon 

ETN 
GRN 

2019/09/11-

2023/02/01 
860 -0.017 2.7527 -19 489 8.636*** 23.38 

ETFs 

NYSE  ETF 
KraneShares Global 

Carbon Strategy ETF 
KRBN 

2020/08/01-

2023/02/01 
641 0.047 1.0487 -1.7 14.1 5618.9*** 16.82 

NYSE  ETF 

iShares MSCI ACWI 

Low Carbon Target 

ETF  

CRBN 
2019/01/01-

2023/02/01 
1060 0.015 0.5716 -1.1 13.1 7780.2*** 43.65 

NYSE  ETF 
VanEck Low Carbon 

Energy ETF ETF  
SMOG 

2019/01/01-

2023/02/01 
1032 0.033 0.945 -0.5 5.86 1520.5*** 12.23 

Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses. 

Sources: S&P Dow Jones Indices website and European Energy Exchange and Yahoo Finance website.
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Table 2 Estimated ARFIMA-FIGARCH model 

 Index 
ARFIMA ARFIMA-FIGARCH 

Model d-coeff. AIC ACH-LM d-Arfima Model d-Figarch AIC ARCH-LM 

Carbon 

Indices 

GLCARB (3,3) 
-0.0829 

3.555 
20.719 -0.1670 

(2,1) 
0.1347 

2.596 
1.348 

(0.1420) (0.0000)*** (0.0614)* (0.2454) (0.2419) 

GLCEUA (3,3) 
-0.0758 

3.450 
15.282 -0.1900 

(2,1) 
0.1296 

3.332 
1.366 

(0.1830) (0.0000)*** (0.0433)** (0.2818) (0.2348) 

LC100 (3,3) 
-0.7452 

1.436 
35.334 -0.3460 

(1,2) 
0.5431 

1.073 
0.2696 

(0.0000)*** (0.0000)*** (0.1660) (0.0001)*** (0.9298) 

Futures FEUA (1,2) 
-0.1631 

3.364 
15.278 -0.0480 

(3,3) 
0.2786 

3.332 
0.8588 

(0.0550)* (0.0000)*** (0.4096) (0.0111)*** (0.5083) 

ETN GRN (1,0) 

0.0075 

4.872 
0.002 0.2692 

(2,1) 
1.2012 

4.705 
0.0044 

(0.8700) (1.0000) (0.0000)*** (0.0000)*** (1.0000) 

ETFs 

KRBN (2,0) 
-0.1166 

2.936 
2.458 -0.1160 

(1,2) 
-0.1121 

2.812 
0.3012 

(0.1640) (0.0322) (0.1441) (0.0000)*** (0.9122) 

CRBN (2,3) 
0.0545 

1.702 
104.730 -0.0510 

(3,3) 
0.655 

1.208 
0.1396 

(0.2650) (0.0000) (0.2387) (0.0002)*** (0.9830) 

SOMG (2,2) 
-0.0047 

2.730 
47.674 0.0232 

(3,2) 
1.0351 

2.397 
0.0910 

(0.8450) (0.0000) (0.3831) (0.0000)*** (0.9937) 

Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses. 
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Figure 1 Carbon Indexes (Prices) regime shifts in volatility
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Table 3 BP Global L Structural Breaks Point for Carbon Index 

 

Test VIX-ETFs H0 H1 
Determined 

breaks 
F-statistic Criteria 

𝐷𝑀𝑎𝑥 

test 

𝑈𝐷𝑀𝑎𝑥 

GLCARB 

m=0 m>0 

3 49.371** 

8.8800 

GLCEUA 5 159.984** 

LC100 5 38.881** 

FEUA 3 188.529** 

GRN 4 1043.149** 

KRBN 5 108.930** 

CRBN 5 51.123** 

SMOG 4 129.710** 

𝑊𝐷𝑀𝑎𝑥 

GLCARB 

m=0 m>0 

5 83.966** 

9.91 

GLCEUA 5 351.065** 

LC100 5 85.319** 

FEUA 5 400.310** 

GRN 5 2150.639** 

KRBN 5 239.033** 

CRBN 5 112.183** 

SMOG 4 223.029** 

           Note: ** Significant at the 0.05 level, respectively. 
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Table 3-1 Structural Breaks for in Mean for Carbon index 

Test Indices H0 H1 Scaled F-statistic 
Weighted      

F-statistic 
Criteria 

𝑆𝑢𝑏𝐹  

GLCARB 

m=0 m=1 9.789** 9.789** 8.58 

m=0 m=2 35.062** 41.690** 7.22 

m=0 m=3 49.372** 71.075** 5.96 

m=0 m=4 45.240** 77.788** 4.99 

m=0 m=5 38.264** 83.966** 3.91 

GLCEUA 

m=0 m=1 5.236** 5.236** 8.58 

m=0 m=2 33.620** 39.952** 7.22 

m=0 m=3 114.099** 164.257** 5.96 

m=0 m=4 141.097** 242.609** 4.99 

m=0 m=5 159.984** 351.065** 3.91 

LC100 

m=0 m=1 17.858** 17.858** 8.58 

m=0 m=2 20.116** 20.905** 7.22 

m=0 m=3 18.796** 27.058** 5.96 

m=0 m=4 22.697** 39.026** 4.99 

m=0 m=5 38.881** 85.319** 3.91 

FEUA 

m=0 m=1 27.581** 27.580** 8.58 

m=0 m=2 54.392** 64.637** 7.22 

m=0 m=3 188.529** 271.405** 5.96 

m=0 m=4 154.290** 265.291** 4.99 

m=0 m=5 182.426** 400.310** 3.91 

GRN 

m=0 m=1 346.207** 346.207** 8.58 

m=0 m=2 459.818** 546.432** 7.22 

m=0 m=3 898.713** 1293.784** 5.96 

m=0 m=4 1043.149** 1793.630** 4.99 

m=0 m=5 980.070** 2150.639** 3.91 

KBRN 

m=0 m=1 3.492** 3.492** 8.58 

m=0 m=2 13.566** 16.122** 7.22 

m=0 m=3 13.015** 18.736** 5.96 

m=0 m=4 107.093** 184.140** 4.99 

m=0 m=5 108.930** 239.033** 3.91 

CRBN 

m=0 m=1 16.858** 16.858** 8.58 

m=0 m=2 29.130** 34.617** 7.22 

m=0 m=3 45.988** 66.204** 5.96 

m=0 m=4 29.570** 50.843** 4.99 

m=0 m=5 51.123** 112.183** 3.91 

SMOG 

m=0 m=1 1.558** 1.558** 8.58 

m=0 m=2 8.177** 9.717** 7.22 

m=0 m=3 97.027** 139.679** 5.96 

m=0 m=4 129.710** 223.029** 4.99 

m=0 m=5 79.373** 174.174** 3.91 
Note: ** Significant at the 0.05 level, respectively.
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Table 4 BP Structural Breaks Point for Carbon Index 

 Indices H0 H1 Seq. F-statistic Criteria Break Dates 

𝑆𝑢𝑝𝐹𝑇(𝑙 + 1|𝑙) 

GLCARB 
m=(0|0) m=(1|0) 

1 
9.789** 8.58 2021/08/26 

m=(1|1) m=(2|1) 1.676 10.13  

GLCEUA 

m=(0|0) m=(1|0) 

2 

48.111** 8.58 2021/04/21 

m=(1|1) m=(2|1) 20.184** 10.13 2021/11/24 

m=(2|2) m=(3|2) 4.174 11.14  

LC100 
m=(0|0) m=(1|0) 

1 
17.465** 6.58 2021/03/09 

m=(1|1) m=(2|1) 3.768 10.13  

FEUA 

m=(0|0) m=(1|0) 

2 

32.667** 8.58 2021/05/07 

m=(1|1) m=(2|1) 21.514** 10.13 2021/11/15 

m=(2|2) m=(3|2) 3.223 11.14  

GRN 

m=(0|0) m=(1|0) 

3 

297.632** 8.58 2020/05/08 

m=(1|1) m=(2|1) 351.967** 10.13 2021/08/27 

m=(2|2) m=(3|2) 214.561** 11.14 2021/03/03 

m=(3|3) m=(4|3) 7.123 11.83  

KBRN 

m=(0|0) m=(1|0) 

2 

25.485** 8.58 2021/05/07 

m=(1|1) m=(2|1) 20.243** 10.13 2020/12/15 

m=(2|2) m=(3|2) 9.782 11.14  

CRBN 

m=(0|0) m=(1|0) 

2 

15.905** 8.58 2020/11/09 

m=(1|1) m=(2|1) 17.588** 10.13 2022/05/05 

m=(2|2) m=(3|2) 4.796 11.14  

SMOG 

m=(0|0) m=(1|0) 

2 

25.914** 8.58 2020/09/30 

m=(1|1) m=(2|1) 11.664** 10.13 2022/01/24 

m=(2|2) m=(3|2) 3.394 11.14  

Note: ** Significant at the 0.05 level, respectively. 
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Table 5 BP Global Information Structural Breaks Point for Carbon Index 

Indices Seq. 
BIC LWZ 

Estimated break dates 
Breaks Value Breaks Value 

GLCARB 5 4 4.609 4 4.711 

1: 2021/08/26       

2: 2021/01/20  2021/08/26     

3: 2021/02/08 2021/09/15 2022/06/22    

4: 2020/03/15 2021/02/08 2021/09/15 2022/06/22 

5: 2019/09/13 2020/03/26 2021/02/08 2021/09/15 2022/06/22 

GLCEUA 5 5 8.542 4 8.644 

1: 2021/04/21       

2: 2021/02/05  2021/11/15     

3: 2020/08/02 2021/04/12 2021/11/16    

4: 2020/08/25 2021/04/12 2021/11/18 2022/06/28 

5: 2020/01/10 2020/08/24 2021/04/12 2021/11/18 2022/06/28 

LC100 5 4 3.694 4 3.793 

1: 2021/03/09       

2: 2021/03/09  2022/05/05     

3: 2020/11/09 2021/06/22 2022/05/04    

4: 2020/03/06 2020/11/09 2021/06/22 2022/05/0 

5: 2019/08/14 2020/03/25 2020/11/09 2021/06/22 2022/05/04 

FEUA 5 3 3.385 3 3.462 

1: 2021/05/07       

2: 2021/03/09  2021/11/18     

3: 2020/08/24 2021/04/06 2021/11/18    

4: 2020/01/13 2020/08/24 2021/04/06 2021/11/18 

5: 2020/01/13 2020/08/24 2021/04/06 2021/11/12 2022/06/22 

GRN 5 4 2.411 3 2.524 

1: 2020/05/08       

2: 2020/05/08 2021/08/27     

3: 2020/05/08 2021/03/10 2021/11/16    

4: 2020/05/08 2020/11/16 2021/05/24 2021/11/18 

5: 2020/05/08 2020/11/23 2021/06/01 2021/11/24 2022/07/20 

KRBN 5 5 2.114 4 2.252 

1: 2021/05/07       

2: 2021/03/09  2021/08/27     

3: 2021/04/21 2021/10/10 2022/08/30    

4: 2020/12/15 2021/05/06 2021/11/10 2022/08/30 

5: 2020/12/15 2021/05/06 2021/11/10 2022/03/30 2020/08/30 

CRBN 5 5 3.995 4 4.1 

1: 2020/11/09       

2: 2020/11/16  2022/05/05     

3: 2020/07/08 2021/02/03 2022/04/26    

4: 2020/05/28 2020/12/17 2021/08/03 2022/04/26 

5: 2019/09/04 2020/05/28 2020/12/17 2021/08/03 2022/04/26 

SMOG 5 4 5.001 3 5.095 

1: 2020/09/30       

2: 2020/10/06  2022/01/24     

3: 2020/04/09 2020/11/17 2022/01/24    

4: 2019/09/03 2020/04/14 2020/11/19 2022/01/24 

5: 2019/08/20 2020/03/31 2020/11/06 2021/06/21 2022/01/28 

Note: ** Significant at the 0.05 level, respectively. 
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4.3 Structure break 

Figure 1 shows the change point of variance value for each price series with the points of 

sudden changes separately based on the measurement of the ICSS model for carbon indices in 

volatility. It is possible to identify any significant changes in the variance of the carbon index 

among the carbon indexes by examining the switching points range. Significant changes are 

observed in the variance of LC100 and CRBN carbon index. The subject of this paper is 

switching points and heightened volatility. The variance of carbon indices showed significant 

changes in this study. 

Table 6 gives an idea of the volatility of carbon indexes by describing the results of 

structural breaks using the ICSS methodology. The results show that multiple structural breaks 

affect recognizing sudden changes in the unconditional volatility of a series of endogenous 

events. A structural break exists when the value is higher than 1.358. The results show that 

switching points can fluctuate during multiple breaks of carbon indexes. 

Three regime shifts for the GLCARB, GLCEUA, and LC100 indexes occurred with an 

initial volatility spike on March 5 and 6, 2020, where the maximum values were 4.487, 4.339, 

and 7.009, respectively. In March 2020, rising COVID-19 cases, particularly in the United 

States and the OPEC–Russia price war, further disrupted crude petroleum markets. The 

demand for crude oil was substantially decreased by mandatory lockdowns enforced by several 

European countries and some areas in the United States. Car fuel and lubricant retailers have 

increased their margins by 24 percent because of the steep drop in demand. The COVID-19 

pandemic is dramatically impacting economic activities worldwide in 2020. The lockdown 

measures included the isolation of infected persons, compulsory closure of offices and 

educational institutions, shutting down many industries, grounding most passenger flights, and 

enforced home confinement (Le Quéré et al., 2020) as countries implemented lockdowns and 

restrictions on economic activities, demand for carbon allowances decreased, which resulted 

in a surplus of carbon allowances in the market and a drop in carbon prices. The pandemic has 

directly and immediately impacted emissions, as the decrease in production and traffic volumes 

significantly reduced emissions. Furthermore, the economic recession has a significant effect 

on carbon markets. The reduction in allowance prices is caused by the sharp decrease in 

demand for emission allowances due to the decrease in production. As a result, it encourages 

investment in cleaner technologies. 

The LC100 had a change point on June 10, 2020, with a maximum value of 6.08. The 

CRBN also had a change point on June 7, 2020, with a maximum value of 6.5494. During this 

period, the collapse in oil prices in April, 2020 has also affected the carbon market, leading to 

lower demand for carbon credits. The benchmark for U.S. crude oil dropped to negative 

territory for the first time because of turbulence. The price of Brent Crude, a reference for 

Europe and the rest of the world, also dropped significantly. Producers are scrambling to find 

facilities to store surplus crude oil when faced with an enormous oversupply of demand, with 

inventories peaking at an all-time high in June, 2020. 

The results revealed that GRN, KRBN, and SMOG in the ETN and ETFs samples had a 

significant change point with the maximum values. During economic uncertainty, the Federal 

Reserve is still raising interest rates, and the demand for global vehicle production is decreasing. 

Tesla is part of an extensive portfolio of small carbon ETFs. According to the news report, 

Tesla stock closes out the worst year ever, with a 65% loss in 2022. The Tesla stock's sell-off 

outstripped the losses of major indices like the S&P 500 and the tech-heavy Nasdaq, which fell 

by 20% and 33%, respectively.2 

                                                
2 Insider Inc. https://markets.businessinsider.com/news/stocks/tesla-stock-worst-year-ever-700-billion-market-
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Table 6 Sudden changes in volatility 

Index Change point Interval 𝒎𝒂𝒙𝒌 ((
𝑻

𝟐
) ⌊𝑫𝒌⌋)

𝟏
𝟐⁄

 

GLCARB 

03/06/2020 04/30/2019-06/17/2020 4.4874*** 

11/05/2021 06/18/2020-09/02/2022 10.7024 

11/22/2022 09/06/2022-02/01/2023 3.8030 

GLCEUA 

03/05/2020 04/24/2019-06/17/2020   4.3485** 

11/12/2021 06/18/2020-09/01/2022 10.7871 

11/22/2022 09/02/2022-02/01/2023 4.6114 

LC100 

03/05/2020 09/24/2019 -04/02/2020 7.009*** 

06/02/2020 04/03/2020 -01/29/2021 6.080*** 

03/08/2022 01/29/2021 02/01/2023 7.980*** 

FEUA 

03/10/2020 04/02/2019-06/01/2020 5.6562 

11/18/2021 06/02/2020-02/28/2022 12.1978 

03/07/2022 03/01/2022-02/01/2023 10.2745 

GRN 
02/02/2021 04/06/2020-02/04/2021 13.8655*** 

02/05/2021 02/05/2021-02/01/2023 13.8647 

KRBN 
02/18/2021 02/17/2021-05/24/2022 9.4436 

06/07/2022 05/25/2022-02/01/2023 6.5475*** 

CRBN 

05/26/2020 08/02/2019-10/30/2020   6.5494** 

03/31/2021 11/02/2020-08/16/2021 5.6971 

04/08/2022 08/17/2021-02/01/2023 9.3323 

SMOG 

05/14/2020 03/09/2020-12/15/2020 8.3796 

09/16/2021 12/16/2020-09/20/2021 8.8340 

01/05/2022 09/21/2021-01/31/2023 10.213*** 

Note: *, ** and *** are significant at 10, 5 and 1% levels, respectively. 

 

 

                                                
cap-loss-2022-12. 
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4.4 Structure breaks of an asymmetrical effect 

The current research has calculated the GARCH model to distinguish the statistically 

significant change points and quantify how regime changes can affect volatility. The critical 

value of 1.358 at the 5% level was presented by Inclán and Tiao (1994) under the null of 

independently distributed normal errors. Consequently, the GARCH model uses the dummy 

variable (Fi) based on the ICSS model value. If the value exceeds 1.358, F will be one and zero 

for the remainder. 

The Fi reveals differences in the variance during the study period. A structural break exists 

when Fi exceeds the criterion value of 1.358. Furthermore, this research used r to examine the 

asymmetrical effect. Choosing the optimal fit model is determined by the minimum AIC—the 

presence of positive and significant r results in an asymmetric effect. 

The structural breaks of the dummy variables for the carbon indices are presented in Table 

7. The table shows that at the 1% level, the estimated coefficients for F1 and F2 of the 

GLCARB are negative and significant. Adding dummies decreases the value of the 

unconditional variance. F1, F2, and F3 for the LC100 index show positive and significant 

results at the 1% level, which suggests an increase in the unconditional variance's value and 

stability. Furthermore, the CRBN ETF exhibits a positive and significant r-coefficient at the 

1% level, indicating an asymmetric effect. 

Table 7 The effect of structure breaks with the dummy variable 

Index GARCH AIC F & r Coefficient 

GLCARB (3,3) 2.5799 

F1 -0.0383 (0.0011)*** 

F2 -0.0006 (0.0048)*** 

F3 0.0307 (0.0006)*** 

r 0.0135 (0.9184) 

GLCEUA (3,3) 3.3316 

F1 -0.0193 (0.9151) 

F2 0.4119 (0.0592)** 

F3 0.0574 (0.8074) 

r -0.0281 (0.0113)*** 

LC100 (1,2) 3.287 

F1 0.059 (0.0011)*** 

F2 0.091 (0.0048)*** 

F3 0.076 (0.0006)*** 

r -0.020 (0.9184) 

FEUA (1,1) 2.2557 

F1 -0.1053 (0.1801) 

F2 -0.0707 (0.3517) 

F3 -0.0455 (0.5558) 

r -0.0033 (0.8912) 

GRN (1,2) 4.0147 

F1 12.5208 (0.0000)*** 

F2 0.1401 (0.1056) 

r 0.0293 (0.6819) 

KRBN (3,1) 2.8497 

F1 0.0348 (0.3843) 

F2 0.3384 (0.0034)*** 

r -0.0804 (0.0933)* 

CRBN (3,3) 1.1813 F1 -0.0172 (0.0508)** 
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F2 -0.0127 (0.1898) 

F3 0.0232 (0.1356) 

r 0.0095 (0.0000)*** 

SMOG (3,1) 2.4095 

F1 0.0269 (0.1344) 

F2 0.0117 (0.1277) 

F3 0.0304 (0.0201)*** 

r 0.0319 (0.2230) 

Note: *, **, and *** are significant at 10, 5 and 1% levels, respectively; p-values are in parentheses. 

5. Conclusions 

The ARFIMA–FIGARCH models were utilized in this study to address long memory. The Bai-

Perron test measured the sudden changes in volatility and its persistence for different types of 

carbon indices and prices, taking into account multiple structural breaks in mean and variance. 

The ICSS algorithm methodology is also being utilized. There are several findings in the 

empirical results. The ARFIMA model shows that the significant findings of the FEUA and 

the GRN have considerable memory. Investors can observe the investment performance and 

become aware of changes in market conditions.  

GLCARB, GLCEUA, and GRN have a long memory for volatility, as revealed by the 

ARFIMA-FIGARCH results. Investors and traders can benefit from accurately predicted ones 

with proper modeling and forecasting. The stationary structures of the LC100, KRBN, and 

CRBN are hindering traders from gaining excess returns due to the intermediate memory in 

returns. Consistent with the contributions made by Alberola et al. (2008) and Mansanet-

Bataller et al. (2007), they highlighted the apparent long-run dependence on carbon price.  

Third, the results of ARFIMA-FIGARCH indicate that the negative shock for the volatility 

of returns for the LC100, FEUA, KRBN, and CRBN has more impact than the positive shock 

on volatility.  

Fourth, the COVID-19 pandemic has impacted the global economy, including the carbon 

market. The collapse of oil prices affected the carbon market, leading to decreased demand for 

carbon credits. Following Malik (2003) and Covarrubias et al. (2006), the present study uses 

the ICSS method to observe that most variables have structural breaks that are connected with 

similar changes in different industries. The carbon market can be affected by changes in 

circumstances, including diseases and economic and political issues, as evidenced by these 

examples. Lanouar and Dominique (2011) found that the break date coincides with several 

economic and financial events. 

Strong asymmetrical effects cause structural breaks in CRBN, which indicate that all low-

carbon ETFs are generally unstable. Investors should be cautious when faced with volatile 

shocks related to news, political, and economic issues. Investors can gain confidence in 

predicting the investment by understanding the implications. Carbon emissions can be reduced 

by companies with measurable carbon emissions industries that reduce dependence on fossil 

fuels. This research is valued by scholars for enriching their theory, particularly in the financial 

market. Governments and decision-makers must maintain peaceful political circumstances to 

achieve a remarkable improvement in the financial market. 
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